Evaluation of Biocompatibility for Titanium-Nickel Shape Memory Alloy in Vivo and in Vitro Environments
نویسندگان
چکیده
This study was conducted to evaluate the biocompatibility of titanium-nickel shape memory alloy used as a medical implant material. The authors carried out the following electrochemical corrosion test and in vivo and in vitro biological tests for the alloy and some metal and alloys clinically used previously to compare the intensities concerned with the biological reactions, that is, (1) anodic polarization test for the alloy in a quasi-body fluid, (2) cell proliferation tests for pure titanium (cp Ti), pure nickel (cp Ni), SUS316L stainless steel, titanium-6mass% aluminium4mass% vanadium (Ti-6Al-4V), and titanium-55mass% nickel (Ti-55Ni) by using of L929 fibroblastic cells, (3) Lactate dehydrogenaze (LDH), human interlukin-1 (hIL-1 ), and human tumor necrosis factor(hTNF) biochemical assays by using of U937 human macrophages administered the corrosion products of these alloys for the cells, (4) measurement of the mount of excretions of the metallic corrosion products of Ti-55Ni, SUS316L stainless steel, and Ti-6Al-4V with urine and feces injected into the abdomen cavity of Wistar rats, and (5) tissue reaction observations for SUS316L, Ti-55Ni, and cp Ni wires implanted along the femoral bone axis of the rats. The following results were obtained. (1) The pitting corrosion potentials of Ti-55Ni alloy was drastically improved by the aging treatment. (2) In the case of Ti-55Ni alloy, the inflammatory cytokines, hIL-6 and hTNFwere suppressed to lower levels compared with Ti-6Al-4V alloy. (3) Corrosion products prepared from the titanium alloys were stable in the body. Then it is very hard to eliminate the titanium ions with urine and feces. (4) Ti-55Ni alloy was shown an excellent biocompatibility evaluated by the in vivo implantation test, because of the stable passive film formed on the surface and protected the metal ion release to the surrounding tissue. [doi:10.2320/matertrans.48.352]
منابع مشابه
EFFECT OF ANODIC OXIDATION ON THE CORROSION BEHAVIOR OF NICKEL-TITANIUM SHAPE MEMORY ALLOYS IN SIMULATED BODY FLUIDS (SBF)
The effect of anodic oxidation of a NiTi shape memory alloy in sulfuric acid electrolyte on its surface characteristics was studied. Surface roughness was measured by roughness tester. Surface morphology was studied using optical microscopy (OM) and scanning electron microscopy (SEM). Corrosion behavior was specified by recording Potentiodynamic polarization cur...
متن کاملFabrication of Spiral Stent with Superelastic/ Shape Memory Nitinol Alloy for Femoral Vessel
Stent is a metal mesh tube for opening the obstructed vessels of the body. Ni-Ti alloy is a suitable metal for fabrication of stent due to its potential for applying the appropriate stress and strain to the vessel walls. In this study, super-elastic Nitinol wire was used to build stent samples usable to open femoral vessel. Ageing was performed at 500°C for different periods of time to determin...
متن کاملBiocompatibility and Inflammatory Potential of Titanium Alloys Cultivated with Human Osteoblasts, Fibroblasts and Macrophages
The biomaterials used to maintain or replace functions in the human body consist mainly of metals, ceramics or polymers. In orthopedic surgery, metallic materials, especially titanium and its alloys, are the most common, due to their excellent mechanical properties, corrosion resistance, and biocompatibility. Aside from the established Ti6Al4V alloy, shape memory materials such as nickel-titani...
متن کاملThermo-mechanical behavior of shape memory alloy made stent- graft by multi-plane model
Constitutive law for shape-memory alloys subjected to multi-axial loading, which is based on a semi-micromechanical integrated multi-plane model capable of internal mechanism observations, is generally not available in the literature. The presented numerical results show significant variations in the mechanical response along the multi loading axes. These are attributed to changes in the marten...
متن کاملA review of the requirements and hazards of toxic metals from orthodontic wires
Background: Orthodontics is a part of dentistry that includes preventive methods and correction of dental irregularities that need to be repositioned by functional and mechanical tools to provide an ideal occlusion and a beautiful face for patients. There are currently four metal arch wires used in orthodontic treatment: stainless steel alloy, cobalt-chromium alloy, nickel-titanium alloy, and b...
متن کامل